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The paper concerns an n-degree of freedom damped vibrating system consisting of n!1
masses connected in parallel, by springs and dampers, to an nth mass. The paper analyzes
the construction of such a system from the given complex eigenvalue data. The analysis has
two parts: the establishment of the conditions on the eigenvalues which ensure that they
correspond to an actual system; the derivation of the system parameters from the
eigenvalues.
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1. INTRODUCTION

This paper concerns a linear vibrating system, with n degrees of freedom, governed by an
equation of the form

MuK#Cu5 #Ku"f (t), (1)

where )"d/dt. The substitutions

u (t)"uejt, f(t)"fejt (2)

lead to the equation

(Mj2#Cj#K)u"f. (3)

We will consider the case in which M, C, K are symmetric, M and K are positive-de"nite
(p}d) and C, positive semi-de"nite (ps}d).

The free vibration of the system is governed by the equation

(Mj2#Cj#K)u"0. (4)

The values of j for which this equation has a non-trivial solution, form the complex spectrum
of the quadratic pencil

Q (j)"Mj2#Cj#K. (5)

The values of j in the spectrum appear in pairs, n pairs in all: real negative pairs,
corresponding to overdamped modes; complex conjugate pairs corresponding to
0022-460X/01/070203#15 $35.00/0 ( 2001 Academic Press



Figure 1. A series system of in-line damped vibrators.

Figure 2. An undamped parallel system of vibrators.
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underdamped modes; or complex conjugate imaginary pairs corresponding to undamped
modes.

We consider a second spectrum of equation (5), consisting of these values of j for which
equation (4) has a non-trivial solution having u

n
"0. This spectrum will consist of (n!1)

pairs, again of the three possible kinds. This spectrum is that for the truncated pencil,

Q
L
(j)"M

L
j2#C

L
j#K

L
, (6)

where M
L
, C

L
, K

L
are obtained from M, C, K, respectively, by deleting the nth row and

column of each of the three matrices.
The 2n!1 pairs of eigenvalues contained in the spectra of Q(j) and Q

L
(j) are clearly

insu$cient to determine the 3n(n#1)/2 coe$cients in the three matrices M, C, K. To
obtain a unique solution, or a manageable family of solutions, we must drastically constrain
the form of the matrices. Figures 1 and 2 show two possible systems. The one shown in
Figure 1 is an in-line set of masses (m

i
)n
1

connected by springs (k
i
)n
1

and dampers (c
i
)n
1
; shown

in Figure 2 is a parallel system of masses (m
i
)n~1
1

all connected both to ground and to the
mass m

n
, by springs and dampers.

The outline of the paper is as follows. In section 2, we summarize the known results for
the undamped version of the system in Figure 1; the results for the damped version are given
in section 3. Then in the sections 4 and 5 we analyze the undamped and damped versions of
the parallel system shown in Figure 2.

2. THE UNDAMPED SERIES SYSTEM

For an undamped system, each spectrum consists of complex conjugate imaginary pairs,
$iu

j
, j"1, 2,2, n, for the unconstrained system; $ip

j
, j"1, 2,2, n!1 for the
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constrained system. For this case, it is convenient to write

j
j
"u2

j
, k

j
"p2

j
. (7)

Since the k
j
are the squares of the natural frequencies of the constrained system, they must

satisfy the interfacing conditions

0)j
1
)k

1
)j

2
)2)k

n~1
)j

n
. (8)

If the system is grounded, i.e., k
1
'0, and connected, i.e. (k

i
)n
2
'0, then all the inequalities

in equation (8) are strict, i.e.,

0(j
1
(k

1
(j

2
(2(k

n~1
(j

n
. (9)

We will consider only this case.
The time-reduced equation governing the free vibrations of the undamped system is

(K!jM)u"0, (10)

where

K"

k
1
#k

2
!k

2
!k

2
k
2
#k

3
!k

3

2 2 2

!k
n

k
n

, M"diag(m
1
, m

2
,2,m

n
). (11)

The substitutions

M"M1@2 )M1@2, M1@2u"x, M~1@2KM~1@2"A (12)

reduce equation (10) to the standard form

(A!jI)x"0. (13)

The matrix A is symmetric, tridiagonal, with negative co-diagonal.
Gantmakher and Krein [1] "rst solved the basic problem of reconstructing A from

(2n!1) quantities (j
j
)n
1

and (k
j
)n~1
1

. Golub and Boley [2] gave a stable numerical algorithm
for constructing A. In the vast literature related to the problem and its generalizations (see
Gladwell [3}5]), we mention Gladwell and Willms [6], Ram and Gladwell [7] and Ram
[8]. Gladwell [9] showed how to construct an isospectral family of (undamped) systems like
that in equation (10) which had just one given spectrum (j

j
)n
1
. Gladwell [10] generalized the

problem to "nite element method (FEM) models with tridiagonal, rather than simply
diagonal, mass matrix.

3. THE DAMPED SERIES SYSTEM

The quadratic pencil corresponding to the damped series system of Figure 1 is equation
(5), where K, M are given by equation (11) and

C"

c
1
#c

2
!c

2
!c

2
c
2
#c

3
!c

3

2 2 2

!c
n

c
n

. (14)
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The substitutions

M"M1@2 )M1@2, M1@2u"x, M~1@2CM~1@2"B, M~1@2KM~1@2"A (15)

reduce equation (4) to

(Ij2#Bj#A)x"0. (16)

Now both A, B are symmetric, tridiagonal, p}d and ps}d matrices respectively. Ram and
Elhay [11] studied the reconstruction of A and B from two spectra. The basic step in their
reconstruction is a generalization of the basic step used in some of the early papers, e.g.,
Hald [12], in the undamped case, as we now describe.

In the undamped case there is just one matrix A, and it has the form

A"

a
1

!b
1

!b
1

a
2

!b
2

2 2 2

!b
n~1

a
n

. (17)

The principal minors P
r
(j) of A!jI form a Sturm sequence with initial values

P
0
(j)"1, P

1
(j)"a

1
!j, (18)

and recurrence relation

P
r
(j)"(a

r
!j)P

r~1
(j)!b2

r~1
P
r~2

(j). (19)

The given data, (j
j
)n
1

and (k
j
)n~1
1

are the zeros of P
n
(j) and P

n~1
(j) respectively. Thus,

P
n
(j)"

n
<
j/1

(j
j
!j), P

n~1
(j)"

n~1
<
j/1

(k
j
!j). (20)

Now by considering equation (19) with r"n, and knowing P
n
(j) and P

n~1
(j), we can "nd

P
n~2

(j), a
n
and b

n~1
by synthetic division. Having found P

n~2
(j), we repeat this step to "nd

successively a
n~1

, b
n~2

; 2; a
2
, b

1
; a

1
.

The generalization to the damped case is as follows. The matrix B of equation (16) has the
form

B"

d
1

!e
1

!e
1

d
2

!e
2

2 2 2 2

!e
n~1

d
n

. (21)

The polynomials corresponding to P
1
(j) of equation (18) are

P
0
(j)"1, P

1
(j)"j2#d

1
j#a

1
, (22)

and the recurrence relation is now

P
r
(j)"(j2#d

r
j#a

r
)P

r~1
(j)!(e

r~1
j#b

r~1
)2P

r~2
(j). (23)
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Again the given data (j
j
)2n
1

and (k
j
)2n~2
1

(which appear as complex conjugate or real pairs, as
we noted earlier) are the zeros of P

n
(j) and P

n~1
(j), i.e.,

P
n
(j)"

2n
<
j/1

(j
j
!j), P

n~1
(j)"

2n~2
<
j/1

(k
j
!j). (24)

The essential contribution which Ram and Elhay made was an algorithm to carry out the
synthetic divisions needed to compute a

r
, d

r
, e

r~1
, b

r~1
and P

r~2
(j) from P

r
(j) and P

r~1
(j).

The main di$culty which they encounter is that of not knowing the conditions which the
two complex spectra must satisfy to ensure that the pencil is real and the matrices p}d and
ps}d. We will encounter this di$culty in our analysis given below, but it will occur in
a somewhat milder form.

4. THE UNDAMPED PARALLEL SYSTEM

We suppose that two spectra (j
i
)n
1

and (k
i
)n~1
1

are given, and that they satisfy the strict
interlacing condition (9). We construct a system, shown in Figure 2, which has these two
spectra. Equation (10) has the form

K#k
1
!m

1
j !k

1
K#k

2
!m

2
j !k

2

2 2 2 2

K#k
n~1

!m
n~1

j !k
n~1

!k
1

!k
2

!k
n~1

k!m
n
j

u
1

u
2

2

u
n~1
u
n

"0, (25)

where

k"
n~1
+
j/1

k
j
. (26)

The eigenvalues of the constrained system are

k
j
"(K#k

j
)/m

j
, j"1, 2,2, n!1. (27)

When reduced to the standard form, equation (25) is

(A!jI)x,

k
1
!j !b

1
k
2
!j !b

2

2 2 2 2

k
n~1

!j !b
n~1

!b
1

!b
2

!b
n~1

a
n
!j

x
1

x
2

2

x
n

"0, (28)

where

b
j
"k

j
/(m

j
m

n
)1@2, a

n
"k/m

n
. (29)

The trace of the reduced matrix A is

n~1
+
j/1

k
j
#a

n
"

n
+
j/1

j
j
, (30)
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which yields a
n
. Now the "rst (n!1) lines of equation (28) give

(k
j
!j)x

j
"b

j
x
n

(31)

which, when substituted into the last line, gives the eigenvalue equation

f (j),!

n~1
+
j/1

b2
j

k
j
!j

#a
n
!j"0. (32)

The zeros and poles of f (j) are (j
j
)n
1

and (k
j
)n~1
1

, so that

f (j)"
n
<
j/1

(j
j
!j)N

n~1
<
j/1

(k
j
!j) (33)

and hence

!b2
j
"

n
<
i/1

(j
i
!k

j
)N

n~1
<@
i/1

(k
i
!k

j
), (34)

where @ denotes iOj. The strict interlacing condition (9) implies b2
j
'0.

We have now identi"ed the reduced matrix A: the "rst (n!1) diagonal elements are data,
the last is given by equation (30); and the bordering elements are given by equation (34).

Now we must construct the masses and sti!nesses; we do that by reversing equations (26),
(27) and (29). Put m

1
"1, m

j
"y2

j
, j"1, 2,2, n!1, then equation (29) gives k

j
"b

j
y
j
.

Then equation (27), and equations (26) and (29), respectively, give

k
j
y2
j
!b

j
y
j
!K"0, j"1, 2,2, n!1, (35)

!

n~1
+
j/1

b
j
y
j
#a

n
"0. (36)

Equation (35) is a quadratic equation for y
j

with just one positive root:

y
j
"

b
j
#Jb2

j
#4Kk

j
2k

j

. (37)

When substituted into equation (36), this yields an equation for K:

g (K),!

n
+
j/1

b
j

Mb
j
#Jb2

j
#4Kk

j
N

2k
j

#a
n
"0. (38)

The function g(K) is monotonically decreasing, g (K)P!R as KPR, and g (0)"f (0),
where f (j) is given by equation (32). Now, f (k

1
!)(0 and f (j

1
)"0, 0(j

1
(k

1
, imply

f (0)'0. Thus, g (K) has just one positive root K. Having found K we may "nd y
j

from
equation (37) and complete the reconstruction of the system: k

j
"b

j
y
j
, m

j
"y2

j
.

We have now constructed a unique system of the form shown in Figure 2, which has the
desired spectra. This unique system is a particular member of the family shown in Figure 3.
For the given reduced matrix shown in equation (28), the equations corresponding to
equations (35) and (36) are now

k
j
y2
j
!b

j
y
j
!K

j
"0, j"1, 2,2, n!1, (39)

!

n~1
+
j/1

b
j
y
j
#a

n
"k

n
. (40)



Figure 3. A more general undamped parallel system of n vibrators.
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Here (k
j
, b

j
)n~1
1

and a
n

are known and (y
j
,K

j
)n~1
1

and k
n
are unknown. Equation (39) gives

y
j
"

b
j
#Jb2

j
#4k

j
K

j
2k

j

, (41)

and thus equation (40) becomes

!

n~1
+
j/1

b
j

(b
j
#Jb2

j
#4k

j
K

j
)

2k
j

#a
n
"k

n
. (42)

The left-hand side is a function g (K
1
, K

2
,2,K

n~1
) and, as before g(0, 0,2, 0)'0. Since

g is continuous at (0, 0,2, 0), there is a neighbourhood of (0, 0,2, 0) in which
g(K

1
,2,K

n~1
)'0. Thus there always exists an in"nite family of solutions to equation (42)

corresponding to positive (K
j
)n~1
1

and positive k
n
. Once we have chosen one such solution

we may form (y
j
)n~1
1

from equation (41) and then (k
j
, m

j
)n~1
1

as before.

5. THE DAMPED PARALLEL SYSTEM

We consider the system shown in Figure 4. Equation (4) is

F
1
(j) !(g

1
j#k

1
)

F
2
(j) !(g

2
j#k

2
)

} F

F
n~1

(j) !(g
n~1

j#k
n~1

)

!(g
1
j#k

1
)!(g

2
j#k

2
)2!(g

n~1
j#k

n~1
) F

n
(j)

u
1

u
2
F

u
n~1
u
n

"

0

0

F

0

0

,

(43)

where

F
j
(j)"m

j
j2#(g

j
#G

j
)j#k

j
#K

j
, j"1, 2,2, n!1,

F
n
(j)"m

n
j2#gj#k, g"

n
+
j/1

g
j
, k"

n
+
j/1

k
j
.

(44)



Figure 4. A damped parallel system of n vibrators.
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We suppose that the system is connected, so that (k
j
)n
1
'0, (K

j
)n
1
'0. We now reduce

equation (43) to the standard form

Q (j)x"0, (45)

where

Q (j)"C
Q

L
(j) !aj!b

!aj!b j2#c
n
j#p2

n
D"j2I

n
#jA#B, (46)

Q
L
(j)"j2I

n~1
#jC#+2 , (47)

C"diag(c
1
, c

2
,2, c

n~1
), +2"diag(p2

1
, p2

2
,2,p2

n~1
), (48)

c
j
"

g
j
#G

j
m

j

, p2
j
"

k
j
#K

j
m

j

, a
j
"

g
j

(m
j
m

n
)1@2

, b
j
"

k
j

(m
j
m

n
)1@2

,

j"1, 2,2, n!1. (49)

c
n
"

g

m
n

, p2
n
"

k

m
n

. (50)

The 2n eigenvalues of the real symmetric quadratic pencil Q (j) occur in pairs, either real
or complex conjugate. The physically important case is when they all lie in the left-hand half
of the complex plane. We assume therefore that there are r(0)r)n) real pairs j

j
, j@

j
, where

j
j
(0, j@

j
(0, j"1, 2,2, r, and n!r complex conjugate pairs j

j
, jM

j
, where Re(j

j
))0,

Im(j
j
)'0, j"r#1,2, n. The "rst r pairs correspond to the overdamped modes, and the

remainder to the undamped (Re(j
j
)"0) or underdamped (Re(j

j
)(0) modes.

We label the eigenvalues of Q
L
(j) similarly: k

j
, k@

j
, where k

j
(0, k@

j
(0, j"1, 2,2, s;

k
j
, k6

j
, where Re(k

j
))0, Im(k

j
)'0, j"s#1,2, n!1.
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We now choose (c
j
, p2

j
)n~1
1

so that

j2#c
j
j#p2

j
"G

(j!k
j
) (j!k@

j
), j"1, 2,2, s,

(j!k
j
) (j!kN

j
), j"s#1,2, n!1.

(51)

This means that Q
L
(j) has the speci"ed eigenvalues.

Now we must choose the remaining quantities (a
j
, b

j
)n~1
1

, c
n

and p2
n

so that

det(Q(j))"
n

<
j/1

(j2#d
j
j#u2

j
), (52)

where

j2#d
j
j#u2

j
"G

(j!j
j
) (j!j@

j
), j"1, 2,2, r,

(j!j
j
) (j!jM

j
), j"r#1,2, n.

(53)

The determinant of Q (j), as given by equation (46), is

det(Q (j))"
n

<
j/1

(j2#c
j
j#p2

j
)!

n~1
+
j/1

(a
j
j#b

j
)2

n~1
<@
k/1

(j2#c
k
j#p2

k
), (54)

where @ denotes kOj. By equating the constant terms in equations (52) and (54) we deduce

A
n~1
<
j/1

p2
jB p2

n
!

n~1
+
j/1

b2
j

n~1
<@
k/1

p2
k
"

n
<
j/1

u2
j
, (55)

while by equating the coe$cients of j2n~1 we obtain

n~1
+
j/1

c
j
#c

n
"

n
+
j/1

d
j
. (56)

We comment on these equations. The quantities (p2
k
)n~1
1

and (u2
j
)n
1

may be computed, via
equations (51) and (53), respectively, from the data. Once real (b

j
)n~1
1

are known, equation
(55) gives p2

n
, and ensures that p2

n
'0. Equation (56) gives c

n
in terms of (d

j
)n
1

and (c
j
)n~1
1

,
which again are given, via equations (53) and (51), respectively, in terms of the data.

For convenience, we will call the complete system S, and the system constrained so that
u
n
"0, S

L
. We note that if S is undamped then S

L
is undamped. For the stated contraints on

the eigenvalues j
j
, j@

j
,k

j
,k@

j
mean that all c

j
, d

j
are non-negative. If S is undamped, i.e.,

(d
j
)n
1
"0, then equation (56) implies (c

j
)n
1
"0. If g

n
"0, then the converse is true: if S

L
is

undamped then S is undamped. For if S
L

is undamped, then (c
j
)n~1
1

"0, so that, from
equation (49), g

j
#G

j
"0, j"1, 2,2, n!1. Therefore, since g

j
*0, G

j
*0, we must have

(g
j
,G

j
)n~1
1

"0, and thus g"0 and c
n
"0. Now d

j
*0 and equation (56) implies (d

j
))n
1
"0;

S is undamped.
Now we must "nd the (2n!2) quantities (a

j
, b

j
)n~1
1

. We obtain them by equating
equations (52) and (54) for the s pairs (k

j
,k@

j
)s
1

and for the n!1!s pairs (k
j
, k6

j
)n~1
s`1

. First we
proceed formally. We have

(a
j
k
j
#b

j
)2"MR (k

j
)N2, (a

j
k@
j
#b

j
)2"MR (k@

j
)N2, j"1,2, s, (57)

(a
j
k
j
#b

j
)2"MR(k

j
)N2, (a

j
kN
j
#b

j
)2"MR(kN

j
)N2, j"s#1,2, n!1, (58)
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where

MR(k)N2"
!<n

k/1
(k2#d

k
k#u2

k
)

<(n~1){
k/1

(k2#c
k
k#p2

k
)
"

N(k)

D(k)
. (59)

Note that R(k) is evaluated for one of k
j
, k@

j
,kN

j
; @ denotes kOj.

The two pairs (57) and (58) are fundamentally di!erent. First, consider equation (57);
k
j
, k@

j
are real and negative so that, for a real solution a

j
, b

j
with a

j
*0, b

j
'0, MR(k

j
)N2 and

MR(k@
j
)N2 must be "nite and non-negative. In this case, i.e., 1)j)s, the numerator and

denominator of MR(k
j
)N2 are

N(k
j
)"!

r
<
k/1

(k
j
!j

k
)(k

j
!j@

k
) )

n
<

k/r`1

(k
j
!j

k
) (k

j
!jM

k
)"A(k

j
) )B (k

j
), (60)

D(k
j
)"!

s{<
k/1

(k
j
!k

k
) (k

j
!k@

k
) )

n
<

k/s`1

(k
j
!k

k
) (k

j
!kN

k
)"C (k

j
) )E (k

j
). (61)

Similarly,

MR(k@
j
)N2"N(k@

j
)/D(k@

j
)"A(k@

j
)B (k@

j
)/MC(k@

j
)E (k@

j
)N. (62)

If MR (k
j
)N2 and MR (k@

j
)N2 are to be "nite, then D(k

j
),D (k@

j
) must be non-zero, and thus the

k
j
, k@

j
must be distinct. We order them so that

k
1
(k@

1
(k

2
(k@

2
(2(k@

s
(0 (63)

and we suppose that the (j
j
, j@

j
)r
1

may also be so ordered, i.e.,

j
1
(j@

1
(j

2
(j@

2
(2(j@

r
(0. (64)

The quantities B (k
j
), B (k@

j
),E(k

j
), E(k@

j
), being squares of the norms of non-zero complex

quantities, are positive. Thus, the conditions for MR(k
j
)N2 and MR(k@

j
)N2 to be non-negative

are that

A(k
j
)C(k

j
)*0, A(k@

j
)C(k@

j
)*0. (65)

We note that equation (63) implies C(k
j
)O0, C(k@

j
)O0. When written in full, equation (65)

gives

!

r
<
k/1

(k
j
!j

k
)(k

j
!j@

k
) )

s
<@
k/1

(k
j
!k

k
)(k

j
!k@

k
)*0, j"1, 2,2, s, (66)

!

r
<
k/1

(k@
j
!j

k
) (k@

j
!j@

k
) )

s
<@
k/1

(k@
j
!k

k
) (k@

j
!k@

k
)*0, j"1, 2,2, s. (67)

It may be veri"ed that the necessary and su$cient conditions for these inequalities to hold
are that each k

j
lie between a j

k
, j@

k
pair, and each k@

j
also lie between a j

l
, j@

l
pair; these pairs

may be the same or di!erent, both for one pair k
j
,k@

j
and for two or more pairs k

j
,k@

j
, as

shown in Figure 5. In particular, we note that if S
L

has an overdamped pair k
j
,k@

j
, then

S must have at least one overdamped pair also. When inequalities (66) and (67) are satis"ed,
then MR(k

j
)N2, MR (k@

j
)N2 are non-negative, and equations (57) may be replaced by

a
j
k
j
#b

j
"$R(k

j
), a

j
k@
j
#b

j
"$R(k@

j
), (68)



Figure 5. Three examples of possible k, j con"gurations for overdamped S
L

eigenvalues.
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where R(k
j
)"R and R(k@

j
)"R@ denote the non-negative square roots. In general, there will

be four solutions for a
j
, b

j
; we may write these as

a(1)
j

, b(1)
j

; a(2)
j

, b(2)
j

; !a(1)
j

, !b(1)
j

; !a(2)
j

,!b(2)
j

.

Suppressing index j, we have

a(1)"
R@#R

k@#k@
, b(1)"

!k@R!kR@
k@!k

, (69)

a(2)"
R@#R

k@#k@
, b(2)"

k@R!kR@
k@!k

. (70)

Since R, R@ are both non-negative and k(k@(0, the "rst solution has a(1)*0, b(1)*0; the
inequalities will be strict unless R"0"R@. We note that one of R, R@ can be zero, and will
be zero when a k

j
or k@

j
( j"1,2, s) equals a j

k
or j@

k
(k"1, 2,2, r). We conclude that the

necessary and su$cient condition for there to be a solution for a(1)
j

, b(1)
j

with a(1)
j
*0,

b(1)
j
'0 is that k

j
, k@

j
lie between a j

k
, j@

k
pair, and one of k

j
, k@

j
lies strictly between a j

k
, j@

k
pair. We note that if a(1)

j
*0, b(1)

j
'0, then a(1)

j
'0. We note that the second solution may

or may not be positive.
Now consider equation (58). Since k

j
is complex we may take the square roots of the

complex quantities MR(k
j
)N2 and MR (k6

j
)N2 and get

a
j
k
j
#b

j
"$R(k

j
), a

j
kN
j
#b

j
"$R(k

j
). (71)

Now, for consistency we must take the same signs in the two equations. If we write

MR (k
j
)N2"DR

j
D2e2*hj , 0)h

j
(n, (72)

and take

k
j
"o

j
e*aj ,

n
2
(a

j
(n, (73)

then with R(k
j
)"DR

j
De*hj and the positive signs in equation (71) we "nd

a
j
"

R
j
sin h

j
o
j
sin a

j

, b
j
"

R
j
sin(a

j
!h

j
)

sin a
j

. (74)

If the system is to be a connected system then we must have a
j
*0 and b

j
'0. This

means that we must have

0)h
j
(a

j
, j"s#1,2, n!1. (75)
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We have now found the conditions for the data to correspond to a real quadratic pencil.
We must now investigate when and whether we can "nd real positive masses, sti!nesses and
damping factors from the quadratic pencil. To do this, we must invert equations (44), (49)
and (50). Put m

n
"1, m

i
"u2

i
, then

g
i
"u

i
a
i
, k

i
"u

i
b
i
,

G
i
"u2

i
c
i
!u

i
a
i
, K

i
"u2

i
p2
i
!u

i
b
i
,H i"1, 2,2, n!1, (76)

g
n
"c

n
!

n~1
+
j/1

u
j
a
j
, k

n
"p2

n
!

n~1
+
j/1

u
j
b
j
. (77,78)

The problem of "nding positive u
i
, i"1, 2,2, n!1, is a linear programming problem.

The given spectral data will be realizable if the following problem has a solution:

u
i
'0, u

i
*a

i
/c

i
, u

i
'b

i
/p2

i
, (79)

c
n
!

n~1
+
j/1

a
j
u
j
*0, p2

n
!

n~1
+
j/1

b
j
u
j
'0. (80)

First, we consider the two lower bounds: a
j
/c

j
and b

j
/p2

j
. Suppose the jth mode is

underdamped, then

a
j

c
j

!

b
j

p2
j

"

a
j
p2
j
!b

j
c
j

c
j
p2
j

, (81)

and

a
j
p2
j
!b

j
c
j
"

R
j

sin a
j

Msin h
j
!2 cos a

j
sin (a

j
!h

j
)N. (82)

The inequalities 0)h
j
(n imply sin h

j
*0, and the inequalities n/2(a

j
(n, a

j
'h

j
imply !cos a

j
sin (a

j
!h

j
)'0. Thus, a

j
p2
j
!b

j
c
j
'0. If the mode is overdamped, then

a
j
p2
j
!b

j
c
j
"

k@
j
R

j
#k2

j
R@

j
(k2{

j
!k2

j
)k

j
k@
j

'0. (83)

Thus, in all cases

a
j

c
j

'

b
j

p2
j

. (84)

We must therefore take u
j
"(a

j
/c

j
)#x

j
, x

j
*0, j"1,2, n!1 so that inequalities

(80) become

c
n
!

n
+
j/1

a2
j

c
j

!

n~1
+
j/1

a
j
x
j
*0, (85)

p2
n
!

n
+
j/1

a
j
b
j

c
j

!

n~1
+
j/1

b
j
x
j
'0. (86)
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The conditions for the existence of a non-negative solution x
1
, x

2
,2, x

n~1
are thus

c
n
!

n~1
+
j/1

a2
j

c
j

*0, p2
n
!

n~1
+
j/1

a
j
b
j

c
j

'0. (87)

The "rst condition states that C is ps}d. Inequality (84) shows that the second condition is
somewhat stronger than the condition

p2
n
!

n~1
+
j/1

b2
j

p2
j

'0 (88)

which states that K is positive de"nite.

6. RECAPITULATION AND CONCLUSIONS

The procedure described in section 5 is somewhat involved, and it is di$cult to see it as
a whole. Therefore, we list the principal steps in the analysis, to see what we have
established, and what remains to be established.

The data are the eigenvalues:

j
j
,j@

j
, j"1, 2,2, r, j

j
, jM

j
, j"r#1,2, n,

k
j
, k@

j
, j"1, 2,2, s, k

j
, kN

j
, j"s#1,2, n!1.

The data yield the quantities c
j
, p2

j
through equation (51):

c
j
"!k

j
!k@

j
, p2

j
"k

j
k@
j
, j"1, 2,2, s, (89)

c
j
"!k

j
!kN

j
, p2

j
"k

j
kN
j
, j"s#1,2, n!1, (90)

and similarly give the quantities d
j
, u2

j
through equation (53):

d
j
"!j

j
!j@

j
, u2

j
"j

j
j@
j
, j"1, 2,2, r, (91)

d
j
"!j

j
!jM

j
, u2

j
"j

j
j1
j
, j"r#1,2, n. (92)

Now (c
j
)n~1
1

and (d
j
)n
1

yield c
n

through equation (56):

c
n
"

n
+
j/1

d
j
!

n~1
+
j/1

c
j
. (93)

Since c
n
'0, this equation yields the "rst necessary condition on the eigenvalue data:

!

r
+
j/1

(j
j
#j@

j
)!

n
+

j/r`1

(j
j
#jM

j
)#

s
+
j/1

(k
j
#k@

j
)#

n~1
+

j/s`1

(k
j
#kN

j
)'0. (94)

Now we pass to the next stage; the evaluation of a
j
and b

j
. From the eigenvalue data we

form the quantities R(k
j
), R(k@

j
), j"1, 2,2, s. Then equations (69) give

a
j
"

R (k@
j
)#R(k

j
)

k@
j
!k

j

, b
j
"

!k@
j
R(k

j
)!k

j
R(k@

j
)

k@
j
!k

j

, j"1, 2,2, s. (95)
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These will be "nite and positive if the overdamped eigenvalues satisfy inequalities (63) and
(64), namely

k
1
(k@

1
(k

2
(k@

2
(2(k@

s
(0, (96)

j
1
(j@

1
(j

2
(j@

2
(2(j@

r
(0, (97)

and, in addition, each k
j
, k@

j
lies between a j

k
, j@

k
pair, with one of each k

j
, k@

j
lying strictly

between such a pair.
The corresponding formulae, for the a

j
, b

j
relating to underdamped modes, are given by

equations (72)} (74):

MR(k
i
)N2"R2

j
exp(2ih

j
), 0)h

j
(n, (98)

k
j
"o

j
exp(ia

j
),

n
2
(a

j
(n, (99)

a
j
"

R
j
sin h

j
o
j
sin a

j

, b
j
"

R
j
sin (a

j
!h

j
)

sin a
j

. (100)

Now the simple interlacing conditions satis"ed by the overdamped eigenvalues are
replaced by inequalities which involve all the eigenvalues (j

j
)n
1

and individual eigenvalues
k
j

which appear in R(k
j
). The inequalities are those in (75), namely

0)h
j
(a

j
, j"s#1,2, n!1. (101)

These conditions, and the corresponding interlacing conditions for the overdamped
eigenvalues, ensure that the a

j
, b

j
are positive. Now equation (55) yields the last quantity, p2

n
,

appearing in the reduced matrix Q(j):

p2
n
"G

n
<
j/1

u
j
#

n~1
+
j/1

b2
j

n~1
<@
j/1

p2
kHN

n~1
<
j/1

p2
j
. (102)

At this point, we are assured that the data correspond to a real quadratic pencil, and we
enter the last stage: the determination of the masses m

i
"u2

i
. The analysis given in equations

(76)}(87) shows that the inequalities (87) must hold, and if they do then we may take x
j
"0,

i.e.,

m
n
"1, m

j
"u2

j
, u

j
"a

j
/c

j
. (103)

Now for j"1, 2,2, n!1, we have

g
j
"

a2
j

c
j

, k
j
"

a
j
b
j

c
j

, G
j
"0, K

j
"

a
j

c
j
A
a
j
p2
j

c
j

!b
jB , (104)

while

g
n
"c

n
!

n~1
+
j/1

a2
j
/c

j
, k

n
"p2

n
!

n~1
+
j/1

a
j
b
j
/c

j
. (105)
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If inequality (85) is strict, then we "nd an in"nite family of other solutions with positive
x
j

corresponding to positive G
j
, where now the parameters are given by more general

equations (76)} (78) with a
j
"(a

j
/c

j
)#x

j
, x

j
'0, j"1, 2,2, n!1.

7. CONCLUSIONS

For a linear undamped vibrating system there is a strong and simple statement which can
be made regarding the e!ect of a constraint: the constrained eigenvalues interlace and
unconstrained eigenvalues. This paper has attempted to elucidate what happens when the
system is subjected to (viscous) damping. Now the eigenvalues of both the original and
constrained systems are complex. We have studied a particularly simple system with
n degrees of freedom, with (n!1) masses in parallel. We found that there are interlacing
conditions on overdamped (negative real) eigenvalue pairs, but that the conditions on the
complex pairs of unconstrained and constrained eigenvalues are not simple interlacing
inequalities*they cannot be, because the eigenvalues lie in the complex plane, and the
points in the plane cannot be ordered*but are more complicated inequalities involving all
the eigenvalues at once.

Part 2 will discuss a theoretical}experimental study of the simplest case studied here,
n"2.
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